Ведение передача голоса в ip сетях. Основы IP-телефонии, базовые принципы, термины и протоколы

Технология VoIP реализует задачи и решения, которые с помощью технологии PSTN реализовать будет труднее, либо дороже.

  • Возможность передавать более одного телефонного звонка в рамках высокоскоростного телефонного подключения. Поэтому технология VoIP используется в качестве простого способа для добавления дополнительной телефонной линии дома или в офисе.
  • Свойства, такие как
  • конференция,
  • переадресация звонка,
  • автоматический перенабор,
  • определение номера звонящего,

предоставляются бесплатно или почти бесплатно, тогда как в традиционных телекоммуникационных компаниях обычно выставляются в счёт.

  • Безопасные звонки, со стандартизованным протоколом (такие как SRTP). Большинство трудностей для включения безопасных телефонных соединений по традиционным телефонным линиям, такие как оцифровка сигнала, передача цифрового сигнала, уже решены в рамках технологии VoIP. Необходимо лишь произвести шифрование сигнала и его идентификацию для существующего потока данных.
  • Независимость от месторасположения. Нужно только интернет-соединение для подключения к провайдеру VoIP. Например, операторы центра звонков с помощью VoIP-телефонов могут работать из любого офиса, где есть в наличии эффективное быстрое и стабильное интернет-подключение.
  • Доступна интеграция с другими через интернет, включая видеозвонок , обмен сообщениями и данными во время разговора, аудиоконференции , управление адресной книгой и получение информации о том, доступны ли для звонка другие абоненты.
  • Дополнительные телефонные свойства - такие как маршрутизация звонка, всплывающие окна, альтернативный GSM -роуминг и внедрение IVR - легче и дешевле внедрить и интегрировать. Тот факт, что телефонный звонок находится в той же самой сети передачи данных, что и персональный компьютер пользователя, открывает путь ко многим новым возможностям.

Дополнительно: возможность подключения прямых номеров в любой стране мира (DID).

Мобильные номера

Кодирование вносит дополнительную задержку порядка 15-45 мс, возникающую по следующим причинам:

  • использование буфера для накопления сигнала и учёта статистики последующих отсчётов (алгоритмическая задержка);
  • математические преобразования, выполняемые над речевым сигналом, требуют процессорного времени (вычислительная задержка).

Подобная задержка появляется и при декодировании речи на другой стороне.

Задержку кодека необходимо учитывать при расчёте сквозных задержек (см. ). Кроме того, сложные алгоритмы кодирования/декодирования требуют более серьёзных затрат вычислительных ресурсов системы.

Проведённый в различных исследовательских группах анализ качества передачи речевых данных через Интернет показывает, что основным источником возникновения искажений, снижения качества и разборчивости синтезированной речи является прерывание потока речевых данных, вызванное:

  • потерями пакетов при передаче по сети связи;
  • превышением допустимого времени доставки пакета с речевыми данными.

Это требует решения задачи оптимизации задержек в сети и создание алгоритмов компрессии речи, устойчивых к потерям пакетов (восстановления потерянных пакетов).

Кодеки

Применяемые алгоритмы сжатия голоса при передаче по IP-сети довольно разнообразны. Некоторые практически не сжимают голос, оставляя его на уровне импульсно-кодовой модуляции (то есть 64 килобит в секунду), другие кодеки позволяют сжимать цифровой голосовой поток в 8 и более раз за счёт эффективных алгоритмов кодирования. Существует немало хороших свободных кодеков, использование которых не требует лицензирования. Для других же требуется достижения соответствующей лицензионной сертификации между производителем оборудования (программного обеспечения) и авторами метода сжатия.

Кодек Скорость передачи,
кбит/с
Алгоритмическая
задержка, миллисекунд
Занимаемый поток, кбит/с
IP-пакеты Ethernet-фреймы
G.711 160 64 20 64,8 80
G.723.1 (6.3) 24 6,3 37,5 6,9 17,1
G.723.1 (5.3) 20 5,3 37,5 5,9 16
G.726-32 160 32 20 32,8 42,7
G.726-24 160 24 20 24,8 34,7
G.726-16 160 16 20 16,8 26,7
G.729 (8) 20 8 25 8,8 18,7
G.729 (6.4) 16 6,4 25 7,2 17,1

Оптимизация задержек в сети

Основными преимуществами IP-телефонии является снижение требований к полосе пропускания, что обеспечивается учётом статистических характеристик речевого трафика:

  • блокировкой передачи пауз (диалоговых, слоговых, смысловых и др.), которые могут составлять до 40-50 % времени занятия канала передачи (VAD);
  • высокой избыточностью речевого сигнала и его сжатием (без потери качества при восстановлении) до уровня 20-40 % исходного сигнала (см. аудиокодек).

В то же время для VoIP критичны задержки пакетов в сети, хотя технология обладает некоей толерантностью (устойчивостью) к потерям отдельных пакетов. Так, потеря до 5 % пакетов не приводит к ухудшению разборчивости речи.

При передаче телефонного трафика по технологии VoIP должны учитываться жёсткие требования стандарта ISO 9000 к качеству услуг, характеризующие:

  1. качество установления соединения, определяемое в основном быстротой установления соединения,
  2. качество соединения, показателем которого являются сквозные (воспринимаемые пользователем) задержки и качество воспринимаемой речи.

Общая приемлемая задержка по стандарту - не более 250 миллисекунд . Причины задержек в передаче голосовых данных по сети IP, в большой степени связаны с особенностями транспорта пакетов. Протокол TCP обеспечивает контроль доставки пакетов, однако достаточно медленный и потому не используется для передачи голоса. UDP быстро отправляет пакеты, однако восстановление потерянных данных не гарантируется, что приводит к потеряным частям разговора при восстановлении (обратном преобразовании) звука. Немалые проблемы приносит джиттер (отклонения в периоде поступления-приёмки пакетов), появляющийся при передаче через большое число узлов в нагруженной IP-сети. Недостаточно высокая пропускная способность сети (например при одновременной нагрузке несколькими пользователями), серьёзно влияет не только на задержки (то есть рост джиттера), но и приводит к большим потерям пакетов

Для решения подобных проблем предлагается комлекс мер :

  • использование алгоритимического восстановления потерянных частей голоса (усреднение по соседним данным)
  • приоритизация трафика во время транспорта в одной сети при помощи пометки IP-пакетов в поле Type of Service
  • использование изменяемого джиттер-буфера необходимой длины, который позволяет накапливать пакеты и выдавать их снова с нормальной периодичностью
  • отключение проксирования медиа-данных на узком месте сети, то есть достижение прямого обмена речью между узлом звонящего и вызываемого абонента при посредничестве промежуточных серверах только на этапе установления и завершения вызова
  • применение кодеков с меньшей алгоритмической задержкой (для уменьшения нагрузки на процессор, осуществляющий АЦП и ЦАП)

Безопасность соединения

Большинство потребителей VoIP-решений ещё не поддерживают криптографическое шифрование, несмотря на то, что наличие безопасного телефонного соединения намного проще внедрить в рамках VoIP-технологии, чем в традиционных телефонных линиях. В результате, при помощи анализатора трафика относительно несложно установить прослушивание VoIP-звонков, а при некоторых ухищрениях даже изменить их содержание.

Тот, кто вторгается с использованием анализатора сетевых пакетов, имеет возможность перехватить VoIP-звонки, если пользователь не находится в рамках защищённой виртуальной сети VPN . Эта уязвимость в безопасности может привести к атакам со сбоями (отказами в обслуживании) у пользователя или у кого-то, чей номер принадлежит той же сети. Эти отказы в обслуживании могут полностью уничтожить телефонную сеть, нагрузив её мусорным трафиком и создав постоянный сигнал «занято» и увеличив количество разъединений абонентов .

Однако данная проблема касается и традиционной телефонии, так как абсолютно защищённых способов связи не существует .

Потребители могут обезопасить свою сеть, ограничив доступ в виртуальную локальную сеть данных, спрятав свою сеть с голосовыми данными от пользователей. Если потребитель поддерживает безопасный и правильно конфигурируемый межсетевой интерфейс-шлюз с контролируемым доступом, это позволит обезопасить себя от большинства хакерских атак. Есть несколько ресурсов с открытым кодом (open source solutions), выполняющих анализ трафика VoIP-разговоров. Невысокий уровень безопасности предоставляется в рамках патентованных аудиокодеков, которые нельзя найти в списках источников с открытым кодом, однако, такая «безопасность через непонятность» не зарекомендовала себя, как эффективное средство в других областях. Некоторые вендоры используют также сжатие, чтобы перехват информации было труднее выполнить. Есть мнение, что настоящая безопасность сети требует проведения полного криптографического шифрования и криптографической аутентификации, которые не доступны широкому потребителю. Однако, по некоторым параметрам IP-телефония выигрывает у традиционной в плане безопасности .

Существующий сейчас стандарт безопасности SRTP и новый ZRTP протокол доступен на некоторых моделях IP-телефонов (Cisco , SNOM), аналоговых телефонных адаптерах (Analog Telephone Adapters, ATAs), шлюзах , а также на различных софтфонах . Можно использовать IPsec , чтобы обеспечить безопасность P2P VoIP с помощью применения альтернативного шифрования (opportunistic encryption). Программа Skype не использует SRTP, но там используется система шифрования, которая прозрачна для Skype-провайдера .

Решение Voice VPN (которое представляет собой сочетание технологии VoIP и Virtual Private Network) предоставляет возможность создания безопасного голосового соединения для VoIP-сетей внутри компании, путем применения IPSec шифрования к оцифрованному потоку голосовых данных.

Так же возможно произвести многоуровневое шифрование и полную анонимизацию всего VoIP трафика (голоса, видео, служебной информации и т. д.) с помощью сети I2P , программу-маршрутизатор для работы с которой можно установить на ПК, смартфон, нетбук, ноутбук и т. д. Эта сеть представляет из себя полностью децентрализованную, анонимную среду передачи данных, где каждый пакет данных подвергается четырёхуровневому шифрованию с использованием различных алгоритмов шифрования с максимальными размерами ключа. Сеть I2P использует туннельную передачу данных, где входящий и исходящий трафик идут через разные туннели, каждый из которых зашифрован разными ключами, при этом туннели периодически перестраиваются с изменением ключей шифрования. Все это приводит к невозможности прослушать и проанализировать проходящий поток третьей стороной. При этом на потоковой передаче туннелирование и шифрование не сказывается, так как используется специально созданная для потоковых служб библиотека, поэтому данные приходят строго в заданном порядке, без потерь и дублированний .

Идентификация звонящего

Поддержка услуги определения номера вызывающего (Caller ID) у разных провайдеров может отличаться, хотя большинство VoIP-провайдеров сейчас предлагают услугу «определение идентификатора звонящего (caller ID)» с именем на исходящие звонки. Когда звонок идёт на номер местной сети от какого-то VoIP-провайдера, услуга определения caller ID не поддерживается .

В некоторых случаях, VoIP-провайдеры могут позволить звонящему имитировать какой-то не принадлежащий ему caller ID, потенциально давая возможность демонстрировать такой ID, который фактически не является номером звонящего. Коммерческое VoIP-оборудование и программное обеспечение обычно легко даёт возможность изменять информацию caller ID. Несмотря на то, что эта услуга может обеспечить огромную свободу действий, она также даёт возможность для злоупотреблений.

Статистика трафика

Любое VoIP соединение имеет целый ряд параметров, общепринятых как точные показатели оценки качества соединения. Кроме того большинство существующих операторов IP-телефонии при оказании услуг позволяют даже выбирать узел через который пройдет звонок не только руководствуясь ценой, но и дополнительным статистическими параметрами, характеризующими качество связи:

  • ASR/ABR - отношение количества обслуженных звонков к числу попыток позвонить в процентах. Характеризует наилучший дозвон.
  • ACD - средняя продолжительность звонков через узел на данное направление; % - процент состоявшихся звонков с длительностью меньше 30 секунд. Характеризует наиболее устойчивую связь во время разговора.

Иногда операторами связи для оценки направления применяются и другие статистические параметры: эрланг , посленаборная задержка (PDD), процент потери пакетов (QoS), максимальное нарастание вызовов в секунду (Calls per seconds, CPS).

Подробную информацию о каждом конкретном вызове станция/сервер IP-телефонии записывает в виде CDR -записей (подробных записей о вызове). Каждая запись содержит номер звонящего (А-номер) и вызываемого (Б-номер), абонентов, IP-адреса (или доменные имена), время и продолжительность вызова, а также инициатора и причину завершения. Подробные записи о вызовах (Call Detail Record), зачастую выгружаются на биллинговую систему для анализа и последующей блокировки учётной записи звонящего, при необходимости авторизации вызовов (RADIUS). Такой метод проверки обычно характерен для postpaid-систем оплаты.

Также применяется онлайн-учёт в биллинге посредством процедуры Accounting в протоколе RADIUS , что удобно в системах prepaid-оплаты.

Примечания

См. также

Ссылки

  • Мониторинг и отладка VoIP-сетей с помощью сетевого анализатора
  • Атака на VoIP: Перехват и Подслушивание
  • «Хронические болезни» VoIP (он-лайн презентация, 16 мин)
Вещание
Доступ
Сервисы

За последние годы было предложено несколько решений по созданию универсальной инфраструктуры для передачи разнородного трафика. В условиях повышенных требований к качеству сервиса и ширине полосы пропускания необходимы сети с услугами высокого качества и повышенной скоростью передачи.

IP играет ключевую роль в обеспечении гибкости обслуживания. Для того чтобы увеличить общую рентабельность сети, поставщики должны предоставить услуги, основанные на IP или способные «понимать» IP, так как большинство приложений, требующих предоставления услуг глобальных сетей, использует IP. А поскольку потребители продолжают требовать от своих поставщиков предоставления дополнительных функциональных возможностей, поставщики должны постоянно искать все новые и новые услуги, которые смогут дополнить и усилить приложения потребителей. Можно с уверенностью говорить о том, что эти услуги должны быть основаны на IP.

IP становится стандартным протоколом для корпоративных, intranet- и extranet-сетей. В 80-е годы территориально-распределенные корпоративные сети строились на основе выделенных каналов E1/T1. Для уплотнения каналов применялись мультиплексоры, используемые для интеграции голоса и данных в сетях общего пользования и в частных сетях. В то же время принципы построения телефонных сетей кардинально не менялись. В таких сетях телефонные соединения устанавливаются по предопределенным маршрутам (основным и альтернативным) и «страдают» множеством ограничений: высокая стоимость поддержания большого количества маршрутных таблиц каждой УАТС (PBX) и их реконфигурации при изменении телефонных потоков, неэффективное использование полосы пропускания, ухудшение качества речи при применении механизмов сжатия в сетях с множеством АТС и другие.

В последние годы были разработаны устройства, обеспечивающие передачу голоса по сетям, изначально нацеленным на передачу данных, таким как Frame Relay и IP-сети. Движущей силой при этом является стремление сократить расходы на использование арендуемых линий связи и повысить эффективность применения выделенных корпоративных коммуникаций.

Новый стимул развитию телефонных сетей дало появление технологии передачи голоса по АТМ-сетям, которая предусматривает возможность подключения АТС к АТМ-коммутаторам, способным обрабатывать как потоки данных, так и телефонные сигналы.

В данной статье описываются:

  • технологии передачи голоса и данных по IP-сетям;
  • проблемы построения интегрированных сетей;
  • механизмы, обеспечивающие повышение эффективности полосы пропускания и гибкости управления потоками (компрессии, подавления пауз речи);
  • оборудование ведущих производителей.

Что такое IP-телефония

Телефонная связь по IP - сравнительно молодая служба, использующая, как правило, управляемую IP-сеть для передачи телефонного трафика.

В течение следующих пяти лет ожидаются феноменальные темпы роста рынка услуг VoIP (голос поверх IP). Согласно данным Killen & Associates, в компаниях, входящих в список Fortune 1000, по IP-сетям сейчас проходит менее 1% голосового трафика; к 2002 году эта доля должна достигнуть 18%, а к 2005-му - 33%.

Пользователей и поставщиков услуг привлекают экономические выгоды применения IP для передачи телефонного трафика, проведения конференц-связи с одновременным обменом информацией, IP-центры обслуживания звонков, прозрачная маршрутизация запросов пользователей.

Сравнение качества стандартной телефонной связи по сетям общего пользования с первым поколением устройств VoIP оказывается не в пользу последних, в первую очередь из-за низкой надежности и невысокого качества обслуживания. Однако появление сложных современных приложений и устройств - высокопроизводительных коммутаторов и маршрутизаторов, использующих развитые механизмы управления качеством обслуживания (QoS) процессоров цифровых сигналов (DSP), - устраняет многие проблемы VoIP-систем второго поколения.

Под IP-телефонией понимается технология использования IP- сети (Internet или любой другой) в качестве средства организации и ведения телефонных разговоров и передачи факсов в режиме реального времени. IP-телефония является одним из наиболее сложных приложений компьютерной телефонии.

В общих чертах передача голоса в IP-сети происходит следующим образом. Входящий звонок и сигнальная информация из телефонной сети передаются на пограничное сетевое устройство, называемое телефонным шлюзом, и обрабатываются специальной картой устройства голосового обслуживания. Шлюз, используя управляющие протоколы семейства H.323, перенаправляет сигнальную информацию другому шлюзу, находящемуся на приемной стороне IP-сети. Приемный шлюз обеспечивает передачу сигнальной информации на приемное телефонное оборудование согласно плану номеров, гарантируя сквозное соединение. После установления соединения голос на входном сетевом устройстве оцифровывается (если он не был цифровым), кодируется в соответствии со стандартными алгоритмами ITU, такими как G.711 или G.729, сжимается, инкапсулируется в пакеты и отправляется по назначению на удаленное устройство с использованием стека протоколов TCP/IP.

Таким образом, используя IP-сеть, можно обмениваться цифровой информацией для пересылки голосовых или факсимильных сообщений между двумя компьютерами в режиме реального времени. Применение Internet позволит реализовать данную службу в глобальном масштабе.

Основными проблемами построения IP-сети для передачи телефонного трафика являются механизмы управления задержками и поддержание достаточной ширины полосы пропускания. Кроме того, важны способы установления тарифов на услуги и выставления счета за их использование, а также варианты оплаты в IP-сети дополнительных услуг, таких как переадресация вызова, определение номера абонента, маршрутизация в зависимости от времени суток и др.

Немаловажной является проблема оценки прибыльности новой технологии. Действительно ли объединение средств связи на базе IP-сетей сулит значительную экономию? Ответ на этот вопрос можно получить только при комплексном рассмотрении проблемы. Возможно, все обстоит именно так. Если стоимость передачи информации по сети составляет лишь 15-20% от всех затрат на поддержку сетевой инфраструктуры, то 70-процентная экономия сетевых расходов может показаться не столь привлекательной по сравнению с объемом работы, который необходимо будет проделать для перевода всех функций на универсальную основу, а также по сравнению с количеством затрачиваемых средств на создание универсальной инфраструктуры и возможностью использования имеющегося оборудования.

И это лишь малая часть всех проблем, связанных с внедрением универсальных линий связи. Поэтому, как правило, предложение поставщиками услуг интегрированных сетей начинается с создания небольших специализированных сетей, на которых происходит обкатка интеграционных технологий, поиск ответов на вопросы, возникающие при объединении различных видов связи. Однако уже сейчас можно говорить о реальности построения интегрированной инфраструктуры.

Общий подход к построению IP-сети для передачи телефонного трафика

  • «компьютер - компьютер»

    Данный вариант не является примером IP-телефонии, так как голос передается только по сети передачи данных, без выхода в телефонную сеть. Для организации передачи трафика пользователь приобретает необходимое оборудование и программное обеспечение, а также платит провайдеру за эксплуатацию канала связи. Достоинство этого варианта заключается в максимальной экономии средств. Недостаток - минимальное качество связи.

  • «телефон - телефон»

    Для организации такой связи необходимо наличие определенных сетевых устройств и механизмов взаимодействия. Голосовой трафик передается через IP-сеть, как правило, на отдельном дорогостоящем участке. Устройствами, организующими взаимодействие, являются шлюзы, состыкованные, с одной стороны, с телефонной сетью общего пользования, а с другой - с IP-сетью. Голосовая связь в таком режиме, по сравнению с вариантом «компьютер - компьютер», стоит дороже, однако качество ее значительно выше и пользоваться ею удобнее. Для того чтобы воспользоваться этой услугой, надо позвонить провайдеру, обслуживающему шлюз, ввести с телефонного аппарата код и номер вызываемого абонента и разговаривать так же, как при обычной телефонной связи. Все необходимые операции по маршрутизации вызова выполнит шлюз.

  • «компьютер - телефон»

    Здесь открывается больше возможностей использования для корпоративных пользователей, так как чаще всего применяется корпоративная сеть, обслуживающая вызовы от компьютеров до шлюза, которые уже затем передаются по телефонной сети общего пользования. Корпоративные решения с использованием связи «компьютер - телефон» могут помочь сэкономить деньги, а необходимое для этого оборудование будет рассмотрено ниже.

Итак, очевидно, что для построения сети IP-телефонии необходимы два основных элемента (рис. 1).

Первый - шлюз (gateway), обеспечивающий функции преобразования между пакетно-коммутируемой IP-сетью и телефонной сетью общего пользования, аналого-цифровое преобразование, управление форматами передачи и процедурами VoIP-вызовов. Возможно использование множества шлюзов в сети.

Второй основной элемент - устройство управления (gatekeeper), обеспечивающее ряд функций по управлению доступом в IP-сеть и из IP-сети, шириной полосы пропускания и адресацией. Кроме того, устройство управления осуществляет контроль всех шлюзов и терминалов, исполняет функции службы каталогов, контролирует счета пользователей.

Шлюз может поставляться в виде отдельного сетевого устройства или устанавливаться на персональном компьютере. При использовании шлюза VoIP-функция прозрачна для пользователя, использующего обычный телефон или факсимильный аппарат. Рассмотрим более подробно основные функции шлюза при передаче голоса через IP-сеть.

1. Функция поиска. Когда исходящий IP-шлюз размещает телефонный вызов через IP-сеть, он принимает номер вызывающего абонента и конвертирует его в IP-адрес шлюза назначения, исходя или из таблицы в исходящем шлюзе, или из данных централизованного сервера. Просмотр таблицы в исходящем шлюзе часто требует меньше времени, чем в централизованном сервере, и сокращает время соединения с 4-5 секунд до 1-2 секунд.

2. Функция связи. Исходящий шлюз устанавливает соединение со шлюзом назначения, обмениваясь информацией о параметрах соединения и совместимости устройств.

3. Оцифровка. Аналоговые сигналы телефонной связи оцифровываются шлюзом и преобразуются обычно в 64 Kбит/c ИКМ (импульсно-кодовая модуляция)-сигнал. Эта функция требует от шлюза поддержки разнообразных интерфейсов аналоговой телефонной связи.

Во многих случаях требуется также поддержка цифровой сети с интеграцией служб и интерфейсов T1/E1. Цифровая сеть с интеграцией служб и интерфейсы T1/E1 работают в формате ИКМ, так что аналого-цифровое преобразование в этом случае не требуется. Цифровая сеть с интеграцией служб BRI имеет один или два ИКМ-канала, T1 - до 24 каналов ИКМ и E1 - до 30 ИКМ-каналов. Цифровая сеть с интеграцией служб PRI может иметь до 24 или 30 каналов ИКМ.

4. Демодуляция. Поскольку некоторые шлюзы могут принимать только голосовой или только факсимильный сигнал, должны быть заранее определены магистральные каналы к модулям обработки голоса или факса. Более сложные шлюзы могут обрабатывать данные обоих типов, автоматически определяя, является ли цифровой сигнал звуковым или факсимильным, и производя обработку сигнала в зависимости от его типа. Факсимильный сигнал демодулируется сигнальным процессором (DSP) обратно в цифровой формат 2,4-14,4 Kбит/c, то есть в первоначальное представление до выдачи из факс-аппарата (факс-аппарат представляет выходной сигнал в аналоговом виде). Этот демодулированный сигнал затем помещается в IP-пакеты для передачи шлюзу назначения (рис. 2).

Демодулированная информация затем снова преобразуется шлюзом назначения в аналоговый факс-сигнал для доставки факс-аппарату.

Передача факса может быть осуществлена с использованием UDP/IP- или TCP/IP-протоколов. UDP/IP, в отличие от TCP/IP, не требует исправления ошибок, возникающих при передаче пакетов.

5. Компрессия. После того как определено, что сигнал является голосовым, он обычно сжимается сигнальным процессором с использованием одного из методов компрессии/декомпрессии (КОДЕК) (табл. 1) и помещается в IP-пакеты. При этом важно обеспечить хорошее качество речи и низкую задержку при оцифровывании сигнала.

Таблица 1. Методы компрессии (сжатия) речи

Метод компрессии Сложность Качество Задержка
G.726, G.727, ADPCM 40, 32, 24 Кбит/с низкая (8 MIPS) хорошее (40К), плохое (16К) очень низкая (10-17 мс)
G.729 CS-ACELP 8 Кбит/с высокая (30 MIPS) хорошее низкая
G.729A CA-ACELP 8 Кбит/с умеренная среднее низкая
G.723.1 MP-MLQ 6,4/5,3 Кбит/с умеренно высокая (20 MIPS) хорошее (6,4), среднее (5,3) высокая
G.728 LD-CELP 16 Кбит/с очень высокая (40 MIPS) хорошее низкая

Звуковой пакет передается как пакет UDP/IP, а не TCP/ IP для избежания довольно больших задержек, возникающих при повторной передаче TCP/IP-пакетов. Если используется режим FEC (непосредственное исправление ошибок), то искаженный или отсутствующий звуковой пакет может быть восстановлен на основе данных предыдущего звукового пакета. Если механизм FEC не применяется, то искаженный пакет просто отвергается и шлюз использует предыдущий хороший пакет. Этот механизм работает незаметно для пользователя в случае низкого процента искажения/потерь пакетов (< 5%).

Данные, оцифровываемые КОДЕКом, не содержат адрес IP-пакета и управляющую информацию («заголовок») (рис. 3), которые обычно составляют дополнительные 7 Кбит/с, если IP-маршрутизатор отдельно не компрессирует заголовок, в противном случае - 2-3 Кбит/с.

Сложность реализации КОДЕКа определяет мощность требуемого сигнального процессора, измеряемую в миллионах операций в секунду (MIPS), для обработки голосового сигнала, исключая функции компенсации эхо-сигнала и подавления молчания.

6. Декомпрессия/демодуляция. Шлюз, исполняя шаги 1-4, описанные выше, в то же самое время принимает пакеты от других IP-шлюзов и декомпрессирует пакеты в форму, понятную соответствующим устройствам аналоговой телефонной связи, цифровой сети с интеграцией служб или с интерфейсами T1/E1. Шлюз также осуществляет демодуляцию цифрового факсимильного сигнала в первоначальную форму, а затем в соответствующий интерфейс телефонной связи.

Кроме того, шлюз может выполнять функции согласования интерфейсов инициатора звонка и принимающего вызов.

Качество IP-речи

Для обеспечения высокого качества речи VoIP-шлюз должен использовать кодек с хорошим качеством речи и низкой задержкой. Кроме того, имеется несколько дополнительных технологий, необходимых для того, чтобы гарантировать хорошее качество речи: две из них - система приоритетов пакетов и компенсация эха. Компенсация эха - функция сигнального процессора, система приоритетов пакета - функция маршрутизатора и шлюза.

Когда двухпроводный телефонный кабель соединяется с четырехпроводным интерфейсом УАТС (PBX) или telco-интерфейсом центральной станции (СО), используется специальное электрическое соединение, называемое гибридной схемой, для согласования двухпроводного и четырехпроводного соединения. Хотя гибридные схемы очень эффективны для выполнения функций согласования, небольшой процент энергии телефонного сигнала не конвертируется, а отражается обратно к вызывающему абоненту. Этот сигнал называется «эхо-сигналом».

Если вызывающий абонент находится около УАТС или центрального коммутатора, эхо-сигнал возвращается достаточно быстро и для человека неразличим. Однако если задержка составляет более 10 мс, вызывающий абонент может услышать отраженный сигнал. Чтобы предотвратить появление эхо-сигнала, поставщики шлюзов включают специальный код в сигнальные процессоры, которые прослушивают эхо-сигнал и удаляют его из аудиосигнала. Компенсация эха особенно важна для поставщиков шлюзов, потому что задержка в IP-сети может легко превысить 40-50 миллисекунд, так что эхо-сигнал будет явно ощущаться на ближнем конце. Компенсация эхо-сигнала, идущего от дальнего конца линии, позволяет существенно повлиять на качество сигнала.

Основными источниками снижения качества речи являются сетевая задержка и флуктуация пакетов. Сетевая задержка представляет собой среднее значение времени передачи пакета по сети. Флуктуация - отклонение от среднего времени передачи пакета. Оба параметра важны для определения качества речи.

Поскольку время передачи по сети (полное время, включая время обработки кодеком) часто превышает 150 мс, общение двух абонентов будет все более и более напоминать режим полудуплексной связи с установлением нужной паузы при разговоре. Если паузы фиксируются плохо, то речь одного собеседника как бы «набегает» на речь другого.

Одним из основных средств борьбы с перегруженностью сети должно стать обеспечение качества сервиса (Quality of Service - QoS).

В чем смысл QoS? QoS означает динамическое предоставление гарантированной полосы пропускания для различных приложений и передачу данных в соответствии с требованиями, определяемыми пользователем. До сих пор не существует принимаемой всеми трактовки термина «QoS»; чаще всего под QoS понимают установку трафику приоритетов без гарантий на ширину полосы пропускания, обеспечение полосы пропускания фиксированной ширины при передаче данных между двумя заданными узлами сети на основе постоянных или коммутируемых виртуальных каналов, гарантированную поставщиками услуг Internet общую ширину полосы пропускания.

Хорошее качество речи, передаваемой через IP-сеть, объясняется в основном небольшой флуктуацией пакетов, а не низкими значениями сетевой задержки. Значения флуктуации пакетов сети поддерживаются интеллектуальными возможностями маршрутизаторов, которые могут управлять приоритетами голосовых пакетов в IP-сети. Маршрутизатор настраивается на поиск голосовых IP-пакетов и размещение их перед пакетами данных, ожидающими передачи. Система приоритетов голосовых пакетов особенно важна в региональных сетях связи со скоростями от 56 до 512 Кбит/с. При скоростях, характерных для линий T1/E1, это может не потребоваться.

Таким образом, в настоящее время требуемое качество обслуживания обеспечивается в основном средствами управления приоритетом трафика. Отметим, что в IP-сетях возможны и более сложные процедуры управления качеством.

Сегментация IP-пакетов является еще одним важным механизмом управления задержкой VoIP, позволяющим гарантировать, что очень длинный пакет данных не задержит пакет с речевой информацией на выходе из маршрутизатора. Это достигается настройкой маршрутизатора на сегментирование всех исходящих пакетов данных в соответствии с быстродействием сети связи. Комбинация системы приоритетов голоса/факсов и механизмов сегментации пакета создает хорошие предпосылки для построения VoIP-сети.

Другая технология, используемая некоторыми шлюзами для обеспечения хорошего качества речи, - непосредственное исправление ошибок (FEC).

Управление полосой пропускания

Как уже отмечалось, второй важной проблемой внедрения технологий передачи речи по IP-сети является минимизация используемой полосы пропускания канала связи. Здесь важную роль играют механизмы компрессии и подавления пауз. Механизмы, использующие технологию подавления пауз, определяют периоды молчания абонентов в течение сеанса связи или факсимильной передачи и останавливают посылку IP-пакетов в течение этих периодов.

Стремление к более эффективному использованию полосы пропускания стимулирует развитие механизмов сжатия речи. Стандартный ИКМ-сигнал для передачи речи, как уже отмечалось, требует выделения полосы пропускания шириной 64 Кбит/с (рекомендация МСЭ-Т G.711), что на самом деле слишком много.

Один из давно используемых алгоритмов сжатия речи называется АДИКМ (ADPCM, Adaptive Differential Pulse Code Modulation; стандарт G.726 был принят в 1984 году). Этот алгоритм дает практически такое же качество воспроизведения речи, как и ИКМ, однако для передачи информации при его использовании требуется полоса всего в 16 Кбит/с. Метод основан на кодировании не самой амплитуды сигнала, а ее изменения по сравнению с предыдущим значением; поэтому можно обойтись меньшим числом разрядов. В АДИКМ изменение уровня сигнала кодируется четырехразрядным числом, при этом частота измерения амплитуды сигнала сохраняется неизменной.

Все методы кодирования, основанные на определенных предположениях о форме сигнала, не подходят для передачи сигнала с резкими скачками амплитуды. Именно такой вид имеет сигнал, генерируемый модемами или факсимильными аппаратами, поэтому аппаратура, поддерживающая сжатие, должна автоматически распознавать сигналы факс-аппаратов и модемов и обрабатывать их иначе, чем голосовой трафик.

Многие методы кодирования берут свое начало от метода кодирования с линейным предсказанием (LPC, Linear Predictive Coding). В качестве входного сигнала в LPC используется последовательность цифровых значений амплитуды, но кодирование применяется не к отдельным цифровым значениям, а к определенным их блокам. Для каждого такого блока значений вычисляются его характерные параметры: частота, амплитуда и ряд других. Именно эти значения и передаются по сети. При таком подходе к кодированию речи, во-первых, возрастают требования к вычислительным мощностям специализированных процессоров, используемых для обработки сигнала, а во-вторых, увеличивается задержка при передаче, поскольку кодирование применяется не к отдельным значениям, а к некоторому их набору, который перед началом преобразования следует накопить в определенном буфере. Важно, что задержка в передаче речи не только связана с необходимостью обработки цифрового сигнала (эту задержку можно уменьшить, увеличив мощность процессора), но и определяется методом сжатия. Этот метод позволяет достигать очень больших степеней сжатия с полосой пропускания 2,4 или 4,8 Кбит/с, однако качество звука сильно страдает. Поэтому в коммерческих приложениях он не используется, а применяется в основном для ведения служебных переговоров.

Более сложные методы сжатия речи основаны на применении ЛКП в сочетании с элементами кодирования формы сигнала. В этих алгоритмах используется кодирование с обратной связью, когда при передаче сигнала осуществляется оптимизация кода. Закодировав сигнал, процессор пытается восстановить его форму и сравнивает результат с исходным сигналом, после чего начинает варьировать параметры кодировки, добиваясь наилучшего совпадения. Добившись совпадения, аппаратура передает полученный код по линиям связи; на противоположном конце происходит восстановление звукового сигнала. Ясно, что для использования такого метода требуются еще более серьезные вычислительные мощности.

Одной из наиболее распространенных разновидностей описанного метода кодирования является метод LD-CELP (Low-Delay Code-Excited Linear Prediction). Этот метод позволяет достичь удовлетворительного качества воспроизведения при пропускной способности 16 Кбит/с; он был стандартизован Международным союзом электросвязи (International Telecommunications Union - ITU) в 1992 году как алгоритм кодирования речи G.728. Алгоритм применяется к последовательности цифр, получаемых в результате аналого-цифрового преобразования голосового сигнала с 16-разрядным разрешением. Пять последовательных цифровых значений кодируются одним 10-битным блоком - это и дает 16 Кбит/с. Для применения этого метода требуются большие вычислительные мощности: в частности, для непосредственной реализации G.728 необходим процессор с быстродействием 44 MIPS.

В марте 1995 года ITU принял новый стандарт G.723, который предполагается использовать при сжатии речи для организации видеоконференций по телефонным сетям. Этот стандарт является частью более общего стандарта H.324, описывающего подход к организации таких видеоконференций. Целью его принятия является обеспечение видеоконференций с использованием обычных модемов. Основой G.723 является метод сжатия речи MP-MLQ (Multipulse Maximum Likelihood Quantization). Он позволяет добиться весьма существенного сжатия речи при сохранении достаточно высокого качества звучания. В основе метода лежит описанная выше процедура оптимизации; с помощью различных усовершенствований можно сжимать речь до уровня 4,8; 6,4; 7,2 и 8,0 Кбит/с. Структура алгоритма позволяет изменять степень сжатия голоса в ходе передачи. Вносимая кодированием задержка не превышает 20 мс.

Повышая эффективность использования полосы пропускания, механизмы сжатия речи в то же время могут привести к снижению качества речи и увеличению задержек. Некоторые основные алгоритмы сжатия речи и создаваемые при этом задержки приведены в табл. 1.

Количественными характеристиками ухудшения качества речи являются параметры ухудшения качества сигнала при квантовании (QDU, Quantization Distortion Units). Один QDU соответствует ухудшению качества при оцифровке с использованием стандартной процедуры ИКМ; значения QDU для основных методов компрессии приведены в табл. 2. Дополнительная обработка речи ведет к дальнейшей потере качества. Согласно рекомендациям МСЭ-Т, для международных вызовов величина QDU не должна превышать 14. Отметим, что передача разговора по международным магистральным каналам ухудшает качество речи, как правило, на 4 QDU.

Таблица 2. Ухудшение качества речи при использовании различных алгоритмов компрессии

Методы компрессии QDU
ADPCM 32 Кбит/с 3,5
ADPCM 24 Кбит/с 7
LD-CELP 16 Кбит/с 3,5
CS-CELP 8 Кбит/с 3,5

Следовательно, при передаче разговора по национальным сетям должно теряться не более 5 QDU. Поэтому для качественной передачи речи процедуру компрессии/декомпрессии желательно применять в сети только один раз. В некоторых странах это является обязательным требованием регулирующих органов, предъявляемым к сетям, подключенным к сетям общего пользования.

Подавление пауз - важная функция оборудования, обеспечивающего передачу голоса по IP-сетям. Суть технологии подавления пауз заключается в определении различия между моментами активной речи и молчания в период соединения. В результате применения этой технологии генерация пакетов происходит только в моменты активного разговора. Поскольку при типичном разговоре по телефону паузы составляют до 60% времени, возможна двукратная оптимизация количества передаваемых по линии данных. Объединение технологии сжатия речи и подавления пауз речи в коммутаторах приводит к уменьшению потока данных в канале в восемь раз.

Продолжение следует

КомпьютерПресс 5"1999

Допускается к защите.

«___»___________________ 2007 г.

Заведующий кафедрой ИС

д. т. н., проф.

Петрова И.Ю.

Д ипломный проект

Текстовая документация ДП 230201.007.2007

Астрахань – 2007 г.


ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО образованию

Государственное образовательное учреждение высшего профессионального образования

«Астраханский государственный университет»

Факультет математики и информационных технологий

Специальность «Информационные системы и технологии»

Кафедра «Информационные системы»

Утверждаю

Завкафедрой __________________

«____» ___________________20__ г.

по дипломному проекту студента

Кутепова Петра Викторовича

1. Тема проекта Организация сети передачи голоса по IP протоколу на базе распределённой локальной вычислительной сети АГУ

утверждена приказом по университету от«___» ____________2006г. № __________

2. Дата выдачи задания по дипломному проекту «_____»________________20__г.

3. Исходные данные к проекту.

Общий подход к построению IP-сети для передачи телефонного трафика на безе распределенной сети АГУ. Механизмы управления и решения проблем передачи голоса по IP. Обеспечение качества IP-речи. Управление полосой пропускания. Конфигурирование сетевого оборудования. Создание схемы IP сети для передачи голоса.

4. Функции, реализуемые системой:

· функции, связанные с протоколами передачи данных;

· Обследование предметной области

· Постановка задачи формирования исходных данных с последующим внедрением IP технологии.

· Разработка рабочего проекта - настройка сетевого оборудования, отладка, тестирование, создание документации по использованию

· Расчет экономической и социальной эффективности от внедрения разрабатываемой подсистемы

· Определение эргономических условий для рабочего места сотрудника учебной части

6. Перечень графического материала

Структура IP сети АГУ

1) Схема подключения в корпоративную сеть

2) Структура сети главного корпуса АГУ

3) Структура телефонной сети АГУ

5) Схема интеграции с корпоративной структурой и текущей телефонной системой

6) Структура сети АГУ с технологией IP телефонии

7) Структура сети главного корпуса АГУ с технологией IP телефонии

Руководитель ________________________________________

Задание принял к исполнению ___________________________________________

КАЛЕНДАРНЫЙ ПЛАН

Наименование этапов дипломного проекта Срок выполнения этапов проекта Отметка о выполнении, подпись руководителя
1 Представление проекта задания на дипломный проект до 01.10.2006
2 Согласование задания на дипломный проект с руководителем диплома и заведующим кафедрой до 10.11.2006
3 Введение. Обследование предметной области и подготовка 1-й главы дипломного проекта (10%) до 01.12.2006
4 Технический проект. Глава 2. Подробное описание функций проектируемой системы (25 %) до 10.01.2007
5 Отчет по преддипломной практике с демонстрацией работы созданного программного продукта (60%) до 07.04.2007
6 Глава 3. Разработка рабочего проекта (80%) до 28.04.2007
7 Глава 4. Расчет экономического и социального эффекта (90%) до 12.05.2007
8 Глава 5. Обеспечение эргономики рабочего места (100%) до 25.05.2007
9 Оформление пояснительной записки до 25.05.2007
10 Подготовка презентационного ролика до 25.05.2007
11 Предварительная защита дипломного проекта до 30.05.2007

Студент ___________________________________________

Руководитель ________________________________________

КОНСУЛЬТАНТЫ ПО ПРОЕКТУ

Руководитель _________________________

(подпись)

Задание принял к исполнению _________________________

(подпись)

1 РЕФЕРАТ

Локальная вычислительная сеть, телефония, цифровая автоматическая телефонная станция, маршрутизатор Cisco 3845, IP – телефон, передача голоса, междугородная связь.

Пояснительная записка представлена на 92 страницах и включает 7 таблиц и 30 схем и изображений. Было использовано 28 источников литературы.

Объектом работы является Астараханский государственный университет.

Цель проекта – снизить затраты на междугородные и международные звонки используя технологию IP телефонии, на основе локальной вычислительной сети Астраханского государственного университета.

Данный проект предназначен для:

· сокращения затрат на услуги связи

· повышения качества телефонной связи.

Обычные телефонные звонки требуют разветвлённой сети связи телефонных станций, связанных закреплёнными телефонными линиями. Высокие затраты телефонных компаний приводят к дорогим междугородним разговорам.

В связи с повышением абонентской платы за использование телефонной сети, IP телефония становится более актуальным и выгодным вариантом передачи голоса и факсимильных данных.

В Астраханском государственном университете существует хорошо организованная IP сеть. Она построена с использованием маршрутизатора Cisco 3845 и коммутаторов Cisco Systems серии Catalyst 2950. Использование этого оборудования дает возможность организовать сеть передачи голоса и факсимильных данных по IP протоколу.

Проведен расчет экономической эффективности от внедрения проекта, и рассчитаны следующие показатели:

· Капитальные затраты - 101160 руб

· Амортизация - 860 руб

· Экономия - 34879 руб

· Окупаемость проекта - 4 месяца

.

Разработана структурная схема внедрения IP телефонии в сеть АГУ, схема соединения цифровой АТС ТОС 120 с маршрутизатором Cisco 3845, выбрано оборудование для реализации проекта, выбран провайдер услуг IP телефонии.

Введение. 9

1. Описание предметной области.. 10

1.1. Основные понятия IP телефонии и виды строения сетей IP телефонии. 10

1.2. Структура сети АГУ.. 14

1.3. Решения Cisco Systems для IP-телефонии. 15

1.4. Маршрутизаторы Cisco Systems. 16

1.5. Коммутатор серии Catalyst 2950. 18

1.6. IP телефон. 18

1.7. Функции IP телефонов. 19

1.8. Настройка VPN сети. 20

1.9. Способы и средства защиты информации. 21

2. Технический проект. 23

2.1. Структура сети главного корпуса АГУ.. 23

2.2. Структура телефонной сети АГУ.. 23

2.3. Описание организации сети IP телефонии. 26

2.4. Параметры качества связи. 27

3. Рабочий проект. 29

3.1. Исследование рынка IP телефонии. 29

3.2. Компании представляющие решения IP-телефонии. 31

3.3. Поиск оптимального по требованиям IP – провайдера. 36

3.4. Cisco Call Manager 40

3.5. Модуль Cisco Unity Express. 41

3.6. Модуль Cisco Systems VWIC-2MFT-E1 на 60 голосовых каналов. 42

3.7. Подключение цифровой АТС АГУ к маршрутизатору Cisco 3845. 43

3.9. Настройка Cisco CallManager 46

3.10. Виды соединений при использовании IP-телефонии. 48

3.11. Выбор операторов услуг IP телефонии. 49

3.12. Принципы работы SIPNET. 51

3.13. Настройка маршрутизации SIPNET. 52

3.14. Протокол SIP. Общие сведения. 53

3.15. Принципы протокола SIP. 55

3.16. Интеграция SIP с IP сетями. 56

3.17. Принцип работы VPN.. 59

4. Экономический и социальный эффект от внедрения проекта 61

4.1. Технико-экономическое обоснование проекта. 61

4.2. Экономия на междугородных и международных разговорах. 61

4.3. Ускоренная окупаемость капитальных затрат. 62

4.4. Расчет текущих затрат. 64

4.5. Амортизация. 65

4.6. Расчет финансовых результатов реализации проекта. 65

4.7. Выводы.. 66

5. Обеспечение эргономики рабочего места.. 68


Добрый день, уважаемые хабражители. В данной статье я постараюсь рассмотреть основные принципы IP-телефонии, описать наиболее часто используемые протоколы, указать способы кодирования и декодирования голоса, разобрать некоторые характерные проблемы.

Под IP-телефонией подразумевается голосовая связь, которая осуществляется по сетям передачи данных, в частности по IP-сетям (IP - Internet Protocol). На сегодняшний день IP-телефония все больше вытесняет традиционные телефонные сети за счет легкости развертывания, низкой стоимости звонка, простоты конфигурирования, высокого качества связи и сравнительной безопасности соединения. В данном изложении будем придерживаться принципов эталонной модели OSI (Open Systems Interconnection basic reference model) и рассказывать о предмете “снизу-вверх”, начиная с физического и канального уровней и заканчивая уровнями данных.

"
Модель OSI и инкапсуляция данных

Принципы IP-телефонии

При осуществлении звонка голосовой сигнал преобразуется в сжатый пакет данных (подробнее этот процесс будет рассмотрен в главах “Импульсно кодовая модуляция” и “Кодеки”). Далее происходит пересылка данных пакетов поверх сетей с коммутацией пакетов, в частности, IP сетей. При достижении пакетами получателя, они декодируются в оригинальные голосовые сигналы. Эти процессы возможны благодаря большому количеству вспомогательных протоколов, часть из которых будет рассмотрена далее.

В данном контексте, протокол передачи данных - некий язык, позволяющий двум абонентам понять друг друга и обеспечить качественную пересылку данных между двумя пунктами.

Отличие от традиционной телефонии

В традиционной телефонии установка соединения происходит при помощи телефонной станции и преследует исключительно цель разговора. Здесь голосовые сигналы передаются по телефонным линиям, через выделенное подключение. В случае же IP-телефонии, сжатые пакеты данных поступают в глобальную или локальную сеть с определенным адресом и передаются на основе данного адреса. При этом используется уже IP-адресация, со всеми присущими ей особенностями (такими как маршрутизация).

При этом IP-телефония оказывается более дешевым решением как для оператора, так и для абонента. Происходит это благодаря тому, что:

  • Традиционные телефонные сети обладают избыточной производительностью, в то время, как IP-телефония использует технологию сжатия голосовых пакетов и позволяет полностью использовать емкость телефонной линии.
  • Как правило, на сегодняшний момент доступ в глобальную сеть есть у всех желающих, что позволяет сократить затраты на подключение или совсем исключить их.
  • Звонки в локальной сети могут использовать внутренний сервер и происходить без участия внешней АТС.
Вместе с вышеперечисленным, IP-телефония позволяет улучшить качество связи. Достигается это, опять же, благодаря трем основным факторам:
  • Телефонные серверы постоянно совершенствуются и алгоритмы их работы становятся более устойчивыми к задержкам или другим проблемам IP-сетей.
  • В частных сетях их владельцы обладают полным контролем над ситуацией и могут изменять такие параметры, как ширина полосы пропускания, количество абонентов на одной линии, и, как следствие, величину задержки.
  • Сети с коммутацией пакетов развиваются, и ежегодно вводятся новые протоколы и технологии, позволяющие улучшить качество связи (например, протокол резервирования полосы пропускания RSVP).
Благодаря IP-телефонии очень элегантно решается проблема занятой линии, так как переадресация, либо перевод в режим ожидания могут быть осуществлены несколькими командами в конфигурационном файле на АТС.

Физический уровень (Physical Layer)

На физическом уровне осуществляется передача потока битов по физической среде через соответствующий интерфейс. IP-телефония практически полностью опирается на уже существующую инфраструктуру сетей. В качестве среды передачи информации используются, как правило витая пара категории 5 (UTP5), одномодовое или многомодовое оптическое волокно, либо коаксиальный кабель. Тем самым в полной мере реализуется принцип конвергенции телекоммуникационных сетей.

PoE

Интересно рассмотреть технологию PoE (Power Over Ethernet) - стандарты IEEE 802.3 af-2003 и IEEE 802.3at-2009. Ее суть заключается в возможности обеспечения питанием устройств посредством стандартной витой пары. Большинство современных IP-телефонов, в частности, модельный ряд Cisco Unified IP Phones 7900 Series, поставляются с поддержкой PoE. Согласно стандарту 2009 года, устройства могут получать ток мощностью до 25,5 Ватт.

При подаче питания используются лишь две витых пары кабеля 100BASE-TX, однако некоторые производители задействуют все четыре, достигая мощности до 51 Ватт. Необходимо заметить, что технология не требует модификации уже существующих кабельных систем, в том числе и кабелей Cat 5.

Для определения того, является ли подключаемое устройство питаемым (PD - powered device) на кабель подается напряжение 2,8 - 10 В. Тем самым вычисляется сопротивление подключаемого устройства. Если данное сопротивление находится в диапазоне 19 - 26,5 кОм, то процесс переходит на следующий этап. Если же нет - проверка повторяется с интервалом ≥2 мс.

Далее происходит поиск диапазона мощностей питаемого устройства путем подачи более высокого напряжения и измерения тока в линии. Вслед за этим на линию подается 48 В - питающее напряжение. Также осуществляется постоянный контроль перегрузок.

Канальный уровень (Data Link Layer)

Согласно спецификации IEEE 802 канальный уровень разделяется на два подуровня:
  1. MAC (Media Access Control) - обеспечивает взаимодействие с физическим уровнем;
  2. LLC (Logical Link Control) - обслуживает сетевой уровень.
На канальном уровне работают коммутаторы - устройства, обеспечивающие соединение нескольких узлов компьютерной сети и распределение фреймов между хостами на основе физической (MAC) адресации.

Необходимо упомянуть механизм виртуальных локальных сетей (Virtual Local Area Network). Данная технология позволяет создавать логическую топологию сети без оглядки на ее физические свойства. Достигается это тегированием трафика, что подробно описано в стандарте IEEE 802.1Q.


Формат фрейма

В контексте IP-телефонии отметим Voice VLAN, широко применяющуюся для изоляции голосового трафика, генерируемого IP-телефонами, от других данных. Ее использование целесообразно по двум причинам:

  1. Безопасность. Создание отдельной голосовой VLAN уменьшает вероятность перехвата и анализа голосовых пакетов.
  2. Повышение качества передачи. Механизм VLAN позволяет задать повышенный приоритет голосовым пакетам, и, как следствие, улучшить качество связи.

Сетевой уровень (Network Layer)

На сетевом уровне происходит маршрутизация, соответственно основными устройствами сетевого уровня являются маршрутизаторы (Router). Именно здесь определяется, каким путем данные достигнут получателя с определенным IP-адресом.

Основной маршрутизируемый протокол - IP (Internet Protocol), на основе которого и построена IP-телефония, а также всемирная сеть Интернет. Также существует множество динамических протоколов маршрутизации, самый популярный среди которых OSPF (Open Shortest Path First) - внутренний протокол, основанный на текущем состоянии каналов связи;

На сегодняшний момент существуют специальные VoIP-шлюзы (Voice Over IP Gateway), обеспечивающие подключение обычных аналоговых телефонов к IP-сети. Как правило, они имеют и встроенный маршрутизатор, позволяющий вести учет трафика, авторизовать пользователей, автоматически раздавать IP-адреса, управлять полосой пропускания.

Среди стандартных функций VoIP-шлюзов:

  • Функции безопасности (создание списков доступа, авторизация);
  • Поддержка факсимильной связи;
  • Поддержка голосовой почты;
  • Поддержка протоколов H.323, SIP (Session Initiation Protocol).
Для борьбы с возможными задержками передачи IP необходимо дополнять дополнительными средствами, например протоколами установления очередности (чтобы голосовые данные не конкурировали с обычными).
Как правило, в этих целях на маршрутизаторах используется очередность с малой задержкой (LLQ - Low-Latency queuing), либо взвешенная организация очередей на основе классов (CBWFQ - Class-Based Weighted Fair Queuing).
Кроме того, необходимы схемы маркировки с заданием приоритетов для рассмотрения голосовых данных, как наиболее важных для передачи.

Транспортный уровень (Transport Layer)

Для транспортного уровня характерны:
  • Сегментация данных приложений верхнего уровня;
  • Обеспечение сквозного соединения;
  • Гарантия надежности данных.
Основные протоколы транспортного уровня - TCP (Transmission Control Protocol), UDP (User Datagram Protocol), RTP (Real-time Transport Protocol). Непосредственно в IP-телефонии используются протоколы UDP и RTP, причем основное их отличие от TCP заключается в том, что они не обеспечивают надежность доставки данных. Это является более приемлемым вариантом, нежели осуществление контроля за доставкой (TCP), так как телефонная связь чрезвычайно зависима от задержек передачи, но менее чувствительна к потерям пакетов.

UDP

UDP базируется на сетевом протоколе IP и предоставляет транспортные услуги прикладным процессам. Его главное отличие от TCP - обеспечение негарантированной доставки, то есть при отправке и получении данных никаких подтверждений не запрашивается. Также при отправке информации не обязательно установление логического соединения между модулями UDP (источник и приемник).

RTP

Несмотря на то, что RTP принято считать протоколом транспортного уровня, как правило он работает поверх UDP. С помощью RTP реализуется распознавание типа трафика, работа с метками времени, контроль передачи и нумерация последовательности пакетов.

Основное назначение RTP состоит в том, что он присваивает каждому исходящему пакету временные метки, обрабатывающиеся на приемной стороне. Это позволяет принимать данные в надлежащем порядке, снижает влияние неравномерности времени прохождения пакетов по сети, восстанавливает синхронизацию между аудио и видео данными.

Уровни данных (Data Layers)

Три последних уровня модели OSI рассмотрим совместно. Такое объединение допустимо, так как процессы, происходящие на данных уровнях тесно связаны между собой, и описывать их безотносительно разделения на подуровни будет логичнее.

H.323

Первым делом необходимо описать стек протоколов H.323, разработанный в 1996 году. Данный стандарт содержит описание оборудования, сетевых служб и терминальных устройств, предназначенных для осуществления аудио- и видеосвязи в сетях с коммутацией пакетов (Интернет). Для любого устройства стандарта H.323 обязательна поддержка обмена голосовой информацией.
  • Платформенную независимость.
  • Стандарты кодирования аналоговых данных.
  • Управление полосой пропускания.
  • Гибкость и совместимость.
Отметим очень важный факт: в рекомендациях не определены физическая среда передачи, транспортный протокол и сетевой интерфейс. Это значит, что устройства, поддерживающие стандарт H.323 могут работать в любых существующих сегодня сетях с коммутацией пакетов.

Согласно H.323 четырьмя основными компонентами VoIP-соединения являются:

  • терминал;
  • шлюз;
  • контроллер зоны;
  • контроллер управления многоточечной конференции (MCU - Multipoint Control Unit).


Пример структурной схемы сети в IP-телефонии 

Выдержка из документа, описывающего стек протоколов H.323

1. Управление соединением и сигнализация:
1.а. H.225.0: протоколы сигнализации и пакетирования мультимедийного потока (использует подмножество протокола сигнализации Q.931).
1.б. H.225.0/RAS: процедуры регистрации, допуска и состояния.
1.в. H.245: протокол управления для мультимедиа.
2. Обработка звуковых сигналов:
2.а. G.711: импульсно-кодовая модуляция тональных частот.
2.б. G.722: кодирование звукового сигнала 7 кГц в 64 кбит/с.
2.в. G.723.1: речевые кодеры на две скорости передачи для организации мультимедийной связи со скоростью передачи 5.3 и 6.3 кбит/с.
2.г. G.728: кодирование речевых сигналов 16 кбит/с с помощью линейного предсказания с кодированием сигнала возбуждения с малой задержкой.
2.д. G.729: кодирование речевых сигналов 8 кбит/с с помощью линейного предсказания с алгебраическим кодированием сигнала возбуждения сопряженной структуры.
3. Обработка видеосигналов:
3.а. H.261: видеокодеки для аудиовизуальных услуг со скоростью 64 кбит/с.
3.б. H.263: кодирование видеосигнала для передачи с малой скоростью.
4. Конференц-связь для передачи данных:
4.а. T.120: стек протоколов (включает T.123, T.124, T.125) для передачи данных между оконечными пунктами.
5. Мультимедийная передача:
5.а. RTP: транспортный протокол реального времени.
5.б. RTCP: протокол управления передачей в реальном времени.
6. Обеспечение безопасности:
6.а. H.235: обеспечение безопасности и шифрование для мультимедийных терминалов сети H.323.
7. Дополнительные услуги:
7.а. H.450.1: обобщенные функции для управления дополнительными услугами в H.323.
7.б. H.450.2: перевод соединения на телефонный номер третьего абонента.
7.в. H.450.3: переадресация вызова.
7.г. H.450.4: удержание вызова.
7.д. H.450.5: парковка вызова (park) и ответ на вызов (pick up).
7.е. H.450.6: уведомление о поступившем вызове в состоянии разговора.
7.ж. H.450.7: индикация ожидающего сообщения.
7.з. H.450.8: служба идентификации имен.
7.и. H.450.9: служба завершения соединения для сетей H.323.


Сценарий установки соединения на основе протокола H.323

SIP (Session Initiation Protocol)

SIP - протокол сигнализации, предназначенный для организации, изменения и завершения сеансов связи. SIP независим от транспортных технологий, однако при установлении соединения предпочтительно использовать UDP. Для передачи самой голосовой и видеоинформации рекомендовано применять RTP, но возможность использования других протоколов не исключена.

В SIP определены два типа сигнальных сообщений - запрос и ответ. Также существует шесть процедур:

  • INVITE (приглашение) - приглашает пользователя принять участие в сеансе связи (служит для установления нового соединения; может содержать параметры для согласования);
  • BYE (разъединение) - завершает соединение между двумя пользователями;
  • OPTIONS (опции) - используется для передачи информации о поддерживаемых характеристиках (эта передача может осуществляться напрямую между двумя агентами пользователей или через сервер SIP);
  • АСК (подтверждение) - используется для подтверждения получения сообщения или для положительного ответа на команду INVITE ;
  • CANCEL (отмена) - прекращает поиск пользователя;
  • REGISTER (регистрация) - передает информацию о местоположении пользователя на сервер SIP, который может транслировать ее на сервер адресов (Location Server).

Сценарий сеанса связи SIP

Кодеки

Аудиокодеком называют программу или алгоритм, который сжимает, либо разжимает цифровые звуковые данные, позволяя снизить требования к пропускной способности канала передачи данных. В IP-телефонии на сегодняшний день наиболее распространено преобразование посредством кодека G.729, а также сжатие G.711 по А-закону (alaw) и μ-закону (ulaw).
G.729
G.729 является кодеком, который сжимает исходный сигнал с потерей данных. Основная идея, заложенная в G.729 - передача не самого оцифрованного сигнала, а его параметров (спектральной характеристики, количества переходов через ноль), достаточных для последующего синтезирования на принимающей стороне. При этом все основные характеристики голоса, такие как амплитуда и тембр сохраняются.

Пропускная способность канала, на которую рассчитан данный кодек - 8 кбит/с. Длина кадра обрабатываемого G.729 - 10 мс, частота дискретизации - 8 кГц. Для каждого из таких кадров определяются параметры математической модели, которые в дальнейшем и передаются в канал в виде кодов.

При использовании кодирования G.729 задержка составляет 15 мс, из которых 5 мс тратится на заполнение предварительного буфера. Отметим также, что кодек G.729 предъявляет достаточно высокие требования к ресурсам процессора.

G.711
G.711 - голосовой кодек, который не предполагает никакого сжатия, помимо компандирования - метода уменьшения эффектов каналов с ограниченным динамическим диапазоном. В основе данного метода лежит принцип уменьшения количества уровней квантования сигнала в области высокой громкости, сохраняя при этом качество звука. Две широко использующиеся в телефонии схемы компандирования - alaw и ulaw.

Сигнал в данном кодеке предоставлен потоком величиной 64 кбит/с. Частота дискретизации - 8000 кадров по 8 бит в секунду. Качество голоса субъективно лучше, нежели при применении кодека G.729.

alaw
alaw или А-закон - алгоритм сжатия звуковых данных с потерей информации. В основном используется на территории Европы и России.

Для сигнала x преобразование по алгоритму alaw выглядит следующим образом:

Где А - параметр сжатия (обычно принимается равным 87,7).

ulaw
ulaw или μ-закон - алгоритм сжатия звуковых данных с потерей информации. В основном используется на территории Японии и Северной Америки.

Для сигнала x преобразование по алгоритму ulaw выглядит следующим образом:

где μ принимается равным 255 (8 бит) в стандартах Северной Америки и Японии.

Импульсно кодовая модуляция (PCM - Pulse Code Modulation)

Импульсно кодовая модуляция - передача непрерывной функции в виде серии последовательных импульсов.

Для получения на входе канала связи модулированного сигнала, мгновенное значение несущего сигнала измеряется АЦП с определенным периодом. При этом количество оцифрованных значений в секунду (иначе, частота дискретизации) должно быть большим или равным двукратной максимальной частоте в спектре аналогового сигнала.

Далее полученные значения округляются до одного из заранее принятых уровней. Заметим, что количество уровней необходимо принимать кратным степени двойки. В зависимости от того, сколько было определено уровней, сигнал кодируется определенным количеством бит.


Квантование сигнала

На данном рисунке представлено кодирование с помощью четырех битов (то есть все промежуточные значения аналогового сигнала будут округляться до одного из заранее заданных 16 уровней). Для примера, при времени равном нулю сигнал будет представлен подобным образом: 0111.

При демодуляции последовательность нулей и единиц преобразуется в импульсы демодулятором, уровень квантования которого равен уровню квантования модулятора. После этого ЦАП на основе данных импульсов восстанавливает сигнал, а сглаживающий фильтр окончательно убирает неточности.

В современной телефонии число уровней квантования должно быть большим или равным 100, то есть минимальное количество бит, которым может кодироваться сигнал - 7.

Вопросы качества обслуживания в IP-телефонии (Quality of Service - QoS)

В сетях на основе стека TCP/IP высокое качество обслуживания трафика, чувствительного к задержкам передачи не обеспечивается по умолчанию. При использовании протокола TCP имеется гарантия достоверной доставки информации, но ее перенос может осуществляться с непредсказуемыми задержками. Для UDP характерна минимизация задержек, но гарантия верной доставки пакета отсутствует.

В то же время добротность речевого трафика сильно зависит от качества передачи, и в сети, где не реализованы механизмы, гарантирующие соответственное качество, реализация IP-телефонии может быть не удовлетворяющей требованиям пользователей.

Основными показателями качества обслуживания являются пропускная способность сети и задержка передачи. Задержка при этом определяется как промежуток времени, прошедший с момента отправки пакета, до момента его приема.

Также существуют такие характеристики, как готовность сети и ее надежность (оцениваются по результатам контроля уровня обслуживания в течение длительного времени, либо по коэффициенту использования).

Для улучшения качества связи используются следующие механизмы:

  1. Перемаршрутизация. При перегрузке одного из каналов связи позволяет осуществить доставку при помощи резервных маршрутов.
  2. Резервирование ресурсов канала связи на время соединения.
  3. Приоретизация трафика. Дает возможность помечать пакеты в соответствии с уровнем их важности и производить обслуживание на основе меток.
Как было сказано ранее, голосовой трафик чрезвычайно чувствителен к задержкам передачи. Максимальное время задержки не должно превышать 400 мс (сюда включается и продолжительность обработки информации на конечных станциях). Различают два основных типа задержек:

Задержка при кодировании информации в голосовых шлюзах или терминальном оборудовании. Уменьшается путем улучшения алгоритмов обработки и преобразования голоса.
- Задержка, вносимая сетью передачи. Уменьшается путем улучшения сетевой инфраструктуры, в частности, сокращением количества маршрутизаторов и использованием высокоскоростных каналов.


Источники задержки в IP-телефонии

Джиттер

Еще одно явление, характерное для IP-телефонии - джиттер, или, иначе, случайная задержка распространения пакета.

Обуславливается джиттер тремя факторами:

  • Ограниченная полоса пропускания или некорректная работа активных сетевых устройств;
  • Высокая задержка распространения сигнала;
  • Тепловой шум.
Наиболее часто применяющийся метод борьбы с джиттером - джиттер-буфер, хранящий определенное количество пакетов.

Обычно предусматривается динамическая подстройка длины буфера в течение всего времени существования соединения. Для выбора наилучшей длины используются эвристические алгоритмы.

Джиттер буфер
Для компенсации неравномерной скорости поступления пакетов на приемной стороне создают временное хранилище пакетов, или так называемый джиттер буфер. Его задача, собрать поступающие пакеты в правильном порядке в соответствии с временными метками и выдать их кодеку с правильными интервалами и правильном порядке.

Джиттер буфер

Размер буфера приемное VOIP устройство рассчитывает в процессе работы, либо принудительно задается в настройках. С одной стороны он не может быть слишком большим, чтобы не увеличивать транспортную задержку. С другой стороны, маленький размер буфера вызывает потери пакетов при изменениях времени задержки в IP сети.

Отсюда и происходит одно из главных противоречий, между интернет провайдерами и пользователями IP телефонии. С точки зрения провайдера все пакеты доставлены абоненту, то есть, потерь нет. А с точки зрения VoIP устройства, разница во времени между приходом пакетов значительно превышает джиттер буфер. Поэтому фактически потери есть. На практике потеря более 1% вызывает определенные неприятные ощущения. При 2% разговор оказывается затруднен. При значениях больше 4% разговор уже практически невозможен.

Размер джиттер буфера
Случайная задержка распространения Ji для i-го пакета может определяться по формуле:

где:
Di – отклонение от ожидаемого времени прибытия i-го пакета.
Отклонение от ожидаемого времени прибытия i-го пакета Di определяется по формуле:

где:
R – время прибытия пакета в метках времени RTP,
S – временная метка RTP, взятая из пакета.

Приведем пример расчета ожидаемого размера случайной задержки распространения 5-го пакета, на основе двух предыдущих.

Пусть J4=10 мс; R4=10, R3=11, S4=6, S3=5, тогда D5 будет равно (10-11)-(6-5)=-2.

В среднем, случайная задержка времени распространения для одного пакета в текущем примере составит 10 мс (точнее можно посчитать по формуле, приведенной выше). Тогда для того, чтобы ни один пакет не был отброшен, размер джиттер буфера должен быть равным 10 мс.

Для определения требуемого размера джиттер буфера в мегабайтах, домножим полученное значение на 100 мбит/сек – среднюю пропускную способность сети: 10 10^-3 100 = 128 кб.

Размер джиттер-буфера должен быть больше, чем флуктуация транзитного времени в сети. Например, если для 10 пакетов время транзита колеблется от 5 до 10 мс, то буфер должен быть хотя бы 8 мс, чтобы ни один пакет не был потерян. Лучше, если буфер еще больше, например 12 мс, тогда сможет работать механизм перезапроса потерянных пакетов.

Решения для развертывания телефонной сети

Asterisk

Asterisk - программная АТС, способная коммутировать как VoIP вызовы, так и вызовы, осуществляемые между IP-телефонами и традиционной телефонной сетью общего пользования.

Поддерживаемые протоколы: IAX, SIP, H.323, Skinny, UNIStim.
Поддерживаемые кодеки: G.711 (ulaw и alaw), G.722, G.723, G.729, GSM, iLBC, LPC-10, Speex.

Asterisk - динамично развивающееся открытое программное обеспечение, которое может быть установлено без оглядки на лицензирование. Это делает данную программную АТС привлекательной для малого и среднего бизнеса. Количество абонентов в сети может достигать 2000 и ограничено только мощностью сервера.

Еще одно достоинство Asterisk - возможность гибкой настройки. Весь необходимый функционал либо уже реализован, либо может быть дописан самостоятельно без существенных временных и денежных затрат. Этому способствует принцип: одна задача - один программный модуль.

В сравнении с решениями от таких вендоров, как Cisco или Avaya, Asterisk привлекателен еще и стоимостью развертывания. Фактически все затраты сводятся только к покупке телефонных аппаратов и сервера, способного обеспечить требуемую нагрузку на сеть. Сама программа абсолютно бесплатна.

Cisco Unified Communication Manager (CallManager)

CallManager предназначен скорее для крупных сетей, включающих до 30000 абонентов. Данный программно-аппаратный комплекс обеспечивает надежность работы и позволяет конфигурировать множество параметров, таких как переадресация звонков или голосовое меню. Существует и “облегченная” express версия, предназначенная скорее для небольших офисов.

Из преимуществ Cisco CallManager следует отметить в первую очередь знаменитую техническую поддержку корпорации Cisco. При соответствующем уровне контракта на обслуживание, любая проблема, начиная с вопросов по настройке и заканчивая вышедшим из строя оборудованием, будет решена практически мгновенно. Поэтому Cisco CallManager подойдет компаниям, готовым платить немалые деньги, но и получать при этом высочайшее качество обслуживания.

Avaya IP Office


Система IP Office может стать неплохим выбором для среднего размера телефонной сети. Количество абонентов здесь ограничено не только мощностью сервера, но и количеством приобретенных лицензий. Лицензировать необходимо практически все - платы расширения, используемые приложения и т.д., что может доставить определенные неудобства.

Конфигурирование может осуществляться через ряд программ, но наиболее популярная и простая в обращении - Avaya IP Office Manager. Также возможно управление через консоль с помощью Avaya Terminal Emulator.

В целом, продукция корпорации Avaya не ограничивается одним IP Office. Avaya, в 2009 году слившаяся с еще одним известным производителем Nortel, является признанным лидером на рынке оборудования для IP-телефонии.

За последние годы было предложено несколько решений по созданию универсальной инфраструктуры для передачи разнородного трафика. В условиях повышенных требований к качеству сервиса и ширине полосы пропускания необходимы сети с услугами высокого качества и повышенной скоростью передачи.

IP играет ключевую роль в обеспечении гибкости обслуживания. Для того чтобы увеличить общую рентабельность сети, поставщики должны предоставить услуги, основанные на IP или способные «понимать» IP, так как большинство приложений, требующих предоставления услуг глобальных сетей, использует IP. А поскольку потребители продолжают требовать от своих поставщиков предоставления дополнительных функциональных возможностей, поставщики должны постоянно искать все новые и новые услуги, которые смогут дополнить и усилить приложения потребителей. Можно с уверенностью говорить о том, что эти услуги должны быть основаны на IP.

IP становится стандартным протоколом для корпоративных, intranet- и extranet-сетей. В 80-е годы территориально-распределенные корпоративные сети строились на основе выделенных каналов E1/T1. Для уплотнения каналов применялись мультиплексоры, используемые для интеграции голоса и данных в сетях общего пользования и в частных сетях. В то же время принципы построения телефонных сетей кардинально не менялись. В таких сетях телефонные соединения устанавливаются по предопределенным маршрутам (основным и альтернативным) и «страдают» множеством ограничений: высокая стоимость поддержания большого количества маршрутных таблиц каждой УАТС (PBX) и их реконфигурации при изменении телефонных потоков, неэффективное использование полосы пропускания, ухудшение качества речи при применении механизмов сжатия в сетях с множеством АТС и другие.

В последние годы были разработаны устройства, обеспечивающие передачу голоса по сетям, изначально нацеленным на передачу данных, таким как Frame Relay и IP-сети. Движущей силой при этом является стремление сократить расходы на использование арендуемых линий связи и повысить эффективность применения выделенных корпоративных коммуникаций.

Новый стимул развитию телефонных сетей дало появление технологии передачи голоса по АТМ-сетям, которая предусматривает возможность подключения АТС к АТМ-коммутаторам, способным обрабатывать как потоки данных, так и телефонные сигналы.

В данной статье описываются:

  • технологии передачи голоса и данных по IP-сетям;
  • проблемы построения интегрированных сетей;
  • механизмы, обеспечивающие повышение эффективности полосы пропускания и гибкости управления потоками (компрессии, подавления пауз речи);
  • оборудование ведущих производителей.

Что такое IP-телефония

Телефонная связь по IP - сравнительно молодая служба, использующая, как правило, управляемую IP-сеть для передачи телефонного трафика.

В течение следующих пяти лет ожидаются феноменальные темпы роста рынка услуг VoIP (голос поверх IP). Согласно данным Killen & Associates, в компаниях, входящих в список Fortune 1000, по IP-сетям сейчас проходит менее 1% голосового трафика; к 2002 году эта доля должна достигнуть 18%, а к 2005-му - 33%.

Пользователей и поставщиков услуг привлекают экономические выгоды применения IP для передачи телефонного трафика, проведения конференц-связи с одновременным обменом информацией, IP-центры обслуживания звонков, прозрачная маршрутизация запросов пользователей.

Сравнение качества стандартной телефонной связи по сетям общего пользования с первым поколением устройств VoIP оказывается не в пользу последних, в первую очередь из-за низкой надежности и невысокого качества обслуживания. Однако появление сложных современных приложений и устройств - высокопроизводительных коммутаторов и маршрутизаторов, использующих развитые механизмы управления качеством обслуживания (QoS) процессоров цифровых сигналов (DSP), - устраняет многие проблемы VoIP-систем второго поколения.

Под IP-телефонией понимается технология использования IP- сети (Internet или любой другой) в качестве средства организации и ведения телефонных разговоров и передачи факсов в режиме реального времени. IP-телефония является одним из наиболее сложных приложений компьютерной телефонии.

В общих чертах передача голоса в IP-сети происходит следующим образом. Входящий звонок и сигнальная информация из телефонной сети передаются на пограничное сетевое устройство, называемое телефонным шлюзом, и обрабатываются специальной картой устройства голосового обслуживания. Шлюз, используя управляющие протоколы семейства H.323, перенаправляет сигнальную информацию другому шлюзу, находящемуся на приемной стороне IP-сети. Приемный шлюз обеспечивает передачу сигнальной информации на приемное телефонное оборудование согласно плану номеров, гарантируя сквозное соединение. После установления соединения голос на входном сетевом устройстве оцифровывается (если он не был цифровым), кодируется в соответствии со стандартными алгоритмами ITU, такими как G.711 или G.729, сжимается, инкапсулируется в пакеты и отправляется по назначению на удаленное устройство с использованием стека протоколов TCP/IP.

Таким образом, используя IP-сеть, можно обмениваться цифровой информацией для пересылки голосовых или факсимильных сообщений между двумя компьютерами в режиме реального времени. Применение Internet позволит реализовать данную службу в глобальном масштабе.

Основными проблемами построения IP-сети для передачи телефонного трафика являются механизмы управления задержками и поддержание достаточной ширины полосы пропускания. Кроме того, важны способы установления тарифов на услуги и выставления счета за их использование, а также варианты оплаты в IP-сети дополнительных услуг, таких как переадресация вызова, определение номера абонента, маршрутизация в зависимости от времени суток и др.

Немаловажной является проблема оценки прибыльности новой технологии. Действительно ли объединение средств связи на базе IP-сетей сулит значительную экономию? Ответ на этот вопрос можно получить только при комплексном рассмотрении проблемы. Возможно, все обстоит именно так. Если стоимость передачи информации по сети составляет лишь 15-20% от всех затрат на поддержку сетевой инфраструктуры, то 70-процентная экономия сетевых расходов может показаться не столь привлекательной по сравнению с объемом работы, который необходимо будет проделать для перевода всех функций на универсальную основу, а также по сравнению с количеством затрачиваемых средств на создание универсальной инфраструктуры и возможностью использования имеющегося оборудования.

И это лишь малая часть всех проблем, связанных с внедрением универсальных линий связи. Поэтому, как правило, предложение поставщиками услуг интегрированных сетей начинается с создания небольших специализированных сетей, на которых происходит обкатка интеграционных технологий, поиск ответов на вопросы, возникающие при объединении различных видов связи. Однако уже сейчас можно говорить о реальности построения интегрированной инфраструктуры.

Общий подход к построению IP-сети для передачи телефонного трафика

  • «компьютер - компьютер»

    Данный вариант не является примером IP-телефонии, так как голос передается только по сети передачи данных, без выхода в телефонную сеть. Для организации передачи трафика пользователь приобретает необходимое оборудование и программное обеспечение, а также платит провайдеру за эксплуатацию канала связи. Достоинство этого варианта заключается в максимальной экономии средств. Недостаток - минимальное качество связи.

  • «телефон - телефон»

    Для организации такой связи необходимо наличие определенных сетевых устройств и механизмов взаимодействия. Голосовой трафик передается через IP-сеть, как правило, на отдельном дорогостоящем участке. Устройствами, организующими взаимодействие, являются шлюзы, состыкованные, с одной стороны, с телефонной сетью общего пользования, а с другой - с IP-сетью. Голосовая связь в таком режиме, по сравнению с вариантом «компьютер - компьютер», стоит дороже, однако качество ее значительно выше и пользоваться ею удобнее. Для того чтобы воспользоваться этой услугой, надо позвонить провайдеру, обслуживающему шлюз, ввести с телефонного аппарата код и номер вызываемого абонента и разговаривать так же, как при обычной телефонной связи. Все необходимые операции по маршрутизации вызова выполнит шлюз.

  • «компьютер - телефон»

    Здесь открывается больше возможностей использования для корпоративных пользователей, так как чаще всего применяется корпоративная сеть, обслуживающая вызовы от компьютеров до шлюза, которые уже затем передаются по телефонной сети общего пользования. Корпоративные решения с использованием связи «компьютер - телефон» могут помочь сэкономить деньги, а необходимое для этого оборудование будет рассмотрено ниже.

Итак, очевидно, что для построения сети IP-телефонии необходимы два основных элемента (рис. 1).

Первый - шлюз (gateway), обеспечивающий функции преобразования между пакетно-коммутируемой IP-сетью и телефонной сетью общего пользования, аналого-цифровое преобразование, управление форматами передачи и процедурами VoIP-вызовов. Возможно использование множества шлюзов в сети.

Второй основной элемент - устройство управления (gatekeeper), обеспечивающее ряд функций по управлению доступом в IP-сеть и из IP-сети, шириной полосы пропускания и адресацией. Кроме того, устройство управления осуществляет контроль всех шлюзов и терминалов, исполняет функции службы каталогов, контролирует счета пользователей.

Шлюз может поставляться в виде отдельного сетевого устройства или устанавливаться на персональном компьютере. При использовании шлюза VoIP-функция прозрачна для пользователя, использующего обычный телефон или факсимильный аппарат. Рассмотрим более подробно основные функции шлюза при передаче голоса через IP-сеть.

1. Функция поиска. Когда исходящий IP-шлюз размещает телефонный вызов через IP-сеть, он принимает номер вызывающего абонента и конвертирует его в IP-адрес шлюза назначения, исходя или из таблицы в исходящем шлюзе, или из данных централизованного сервера. Просмотр таблицы в исходящем шлюзе часто требует меньше времени, чем в централизованном сервере, и сокращает время соединения с 4-5 секунд до 1-2 секунд.

2. Функция связи. Исходящий шлюз устанавливает соединение со шлюзом назначения, обмениваясь информацией о параметрах соединения и совместимости устройств.

3. Оцифровка. Аналоговые сигналы телефонной связи оцифровываются шлюзом и преобразуются обычно в 64 Kбит/c ИКМ (импульсно-кодовая модуляция)-сигнал. Эта функция требует от шлюза поддержки разнообразных интерфейсов аналоговой телефонной связи.

Во многих случаях требуется также поддержка цифровой сети с интеграцией служб и интерфейсов T1/E1. Цифровая сеть с интеграцией служб и интерфейсы T1/E1 работают в формате ИКМ, так что аналого-цифровое преобразование в этом случае не требуется. Цифровая сеть с интеграцией служб BRI имеет один или два ИКМ-канала, T1 - до 24 каналов ИКМ и E1 - до 30 ИКМ-каналов. Цифровая сеть с интеграцией служб PRI может иметь до 24 или 30 каналов ИКМ.

4. Демодуляция. Поскольку некоторые шлюзы могут принимать только голосовой или только факсимильный сигнал, должны быть заранее определены магистральные каналы к модулям обработки голоса или факса. Более сложные шлюзы могут обрабатывать данные обоих типов, автоматически определяя, является ли цифровой сигнал звуковым или факсимильным, и производя обработку сигнала в зависимости от его типа. Факсимильный сигнал демодулируется сигнальным процессором (DSP) обратно в цифровой формат 2,4-14,4 Kбит/c, то есть в первоначальное представление до выдачи из факс-аппарата (факс-аппарат представляет выходной сигнал в аналоговом виде). Этот демодулированный сигнал затем помещается в IP-пакеты для передачи шлюзу назначения (рис. 2).

Демодулированная информация затем снова преобразуется шлюзом назначения в аналоговый факс-сигнал для доставки факс-аппарату.

Передача факса может быть осуществлена с использованием UDP/IP- или TCP/IP-протоколов. UDP/IP, в отличие от TCP/IP, не требует исправления ошибок, возникающих при передаче пакетов.

5. Компрессия. После того как определено, что сигнал является голосовым, он обычно сжимается сигнальным процессором с использованием одного из методов компрессии/декомпрессии (КОДЕК) (табл. 1) и помещается в IP-пакеты. При этом важно обеспечить хорошее качество речи и низкую задержку при оцифровывании сигнала.

Таблица 1. Методы компрессии (сжатия) речи

Метод компрессии Сложность Качество Задержка
G.726, G.727, ADPCM 40, 32, 24 Кбит/с низкая (8 MIPS) хорошее (40К), плохое (16К) очень низкая (10-17 мс)
G.729 CS-ACELP 8 Кбит/с высокая (30 MIPS) хорошее низкая
G.729A CA-ACELP 8 Кбит/с умеренная среднее низкая
G.723.1 MP-MLQ 6,4/5,3 Кбит/с умеренно высокая (20 MIPS) хорошее (6,4), среднее (5,3) высокая
G.728 LD-CELP 16 Кбит/с очень высокая (40 MIPS) хорошее низкая

Звуковой пакет передается как пакет UDP/IP, а не TCP/ IP для избежания довольно больших задержек, возникающих при повторной передаче TCP/IP-пакетов. Если используется режим FEC (непосредственное исправление ошибок), то искаженный или отсутствующий звуковой пакет может быть восстановлен на основе данных предыдущего звукового пакета. Если механизм FEC не применяется, то искаженный пакет просто отвергается и шлюз использует предыдущий хороший пакет. Этот механизм работает незаметно для пользователя в случае низкого процента искажения/потерь пакетов (< 5%).

Данные, оцифровываемые КОДЕКом, не содержат адрес IP-пакета и управляющую информацию («заголовок») (рис. 3), которые обычно составляют дополнительные 7 Кбит/с, если IP-маршрутизатор отдельно не компрессирует заголовок, в противном случае - 2-3 Кбит/с.

Сложность реализации КОДЕКа определяет мощность требуемого сигнального процессора, измеряемую в миллионах операций в секунду (MIPS), для обработки голосового сигнала, исключая функции компенсации эхо-сигнала и подавления молчания.

6. Декомпрессия/демодуляция. Шлюз, исполняя шаги 1-4, описанные выше, в то же самое время принимает пакеты от других IP-шлюзов и декомпрессирует пакеты в форму, понятную соответствующим устройствам аналоговой телефонной связи, цифровой сети с интеграцией служб или с интерфейсами T1/E1. Шлюз также осуществляет демодуляцию цифрового факсимильного сигнала в первоначальную форму, а затем в соответствующий интерфейс телефонной связи.

Кроме того, шлюз может выполнять функции согласования интерфейсов инициатора звонка и принимающего вызов.

Качество IP-речи

Для обеспечения высокого качества речи VoIP-шлюз должен использовать кодек с хорошим качеством речи и низкой задержкой. Кроме того, имеется несколько дополнительных технологий, необходимых для того, чтобы гарантировать хорошее качество речи: две из них - система приоритетов пакетов и компенсация эха. Компенсация эха - функция сигнального процессора, система приоритетов пакета - функция маршрутизатора и шлюза.

Когда двухпроводный телефонный кабель соединяется с четырехпроводным интерфейсом УАТС (PBX) или telco-интерфейсом центральной станции (СО), используется специальное электрическое соединение, называемое гибридной схемой, для согласования двухпроводного и четырехпроводного соединения. Хотя гибридные схемы очень эффективны для выполнения функций согласования, небольшой процент энергии телефонного сигнала не конвертируется, а отражается обратно к вызывающему абоненту. Этот сигнал называется «эхо-сигналом».

Если вызывающий абонент находится около УАТС или центрального коммутатора, эхо-сигнал возвращается достаточно быстро и для человека неразличим. Однако если задержка составляет более 10 мс, вызывающий абонент может услышать отраженный сигнал. Чтобы предотвратить появление эхо-сигнала, поставщики шлюзов включают специальный код в сигнальные процессоры, которые прослушивают эхо-сигнал и удаляют его из аудиосигнала. Компенсация эха особенно важна для поставщиков шлюзов, потому что задержка в IP-сети может легко превысить 40-50 миллисекунд, так что эхо-сигнал будет явно ощущаться на ближнем конце. Компенсация эхо-сигнала, идущего от дальнего конца линии, позволяет существенно повлиять на качество сигнала.

Основными источниками снижения качества речи являются сетевая задержка и флуктуация пакетов. Сетевая задержка представляет собой среднее значение времени передачи пакета по сети. Флуктуация - отклонение от среднего времени передачи пакета. Оба параметра важны для определения качества речи.

Поскольку время передачи по сети (полное время, включая время обработки кодеком) часто превышает 150 мс, общение двух абонентов будет все более и более напоминать режим полудуплексной связи с установлением нужной паузы при разговоре. Если паузы фиксируются плохо, то речь одного собеседника как бы «набегает» на речь другого.

Одним из основных средств борьбы с перегруженностью сети должно стать обеспечение качества сервиса (Quality of Service - QoS).

В чем смысл QoS? QoS означает динамическое предоставление гарантированной полосы пропускания для различных приложений и передачу данных в соответствии с требованиями, определяемыми пользователем. До сих пор не существует принимаемой всеми трактовки термина «QoS»; чаще всего под QoS понимают установку трафику приоритетов без гарантий на ширину полосы пропускания, обеспечение полосы пропускания фиксированной ширины при передаче данных между двумя заданными узлами сети на основе постоянных или коммутируемых виртуальных каналов, гарантированную поставщиками услуг Internet общую ширину полосы пропускания.

Хорошее качество речи, передаваемой через IP-сеть, объясняется в основном небольшой флуктуацией пакетов, а не низкими значениями сетевой задержки. Значения флуктуации пакетов сети поддерживаются интеллектуальными возможностями маршрутизаторов, которые могут управлять приоритетами голосовых пакетов в IP-сети. Маршрутизатор настраивается на поиск голосовых IP-пакетов и размещение их перед пакетами данных, ожидающими передачи. Система приоритетов голосовых пакетов особенно важна в региональных сетях связи со скоростями от 56 до 512 Кбит/с. При скоростях, характерных для линий T1/E1, это может не потребоваться.

Таким образом, в настоящее время требуемое качество обслуживания обеспечивается в основном средствами управления приоритетом трафика. Отметим, что в IP-сетях возможны и более сложные процедуры управления качеством.

Сегментация IP-пакетов является еще одним важным механизмом управления задержкой VoIP, позволяющим гарантировать, что очень длинный пакет данных не задержит пакет с речевой информацией на выходе из маршрутизатора. Это достигается настройкой маршрутизатора на сегментирование всех исходящих пакетов данных в соответствии с быстродействием сети связи. Комбинация системы приоритетов голоса/факсов и механизмов сегментации пакета создает хорошие предпосылки для построения VoIP-сети.

Другая технология, используемая некоторыми шлюзами для обеспечения хорошего качества речи, - непосредственное исправление ошибок (FEC).

Управление полосой пропускания

Как уже отмечалось, второй важной проблемой внедрения технологий передачи речи по IP-сети является минимизация используемой полосы пропускания канала связи. Здесь важную роль играют механизмы компрессии и подавления пауз. Механизмы, использующие технологию подавления пауз, определяют периоды молчания абонентов в течение сеанса связи или факсимильной передачи и останавливают посылку IP-пакетов в течение этих периодов.

Стремление к более эффективному использованию полосы пропускания стимулирует развитие механизмов сжатия речи. Стандартный ИКМ-сигнал для передачи речи, как уже отмечалось, требует выделения полосы пропускания шириной 64 Кбит/с (рекомендация МСЭ-Т G.711), что на самом деле слишком много.

Один из давно используемых алгоритмов сжатия речи называется АДИКМ (ADPCM, Adaptive Differential Pulse Code Modulation; стандарт G.726 был принят в 1984 году). Этот алгоритм дает практически такое же качество воспроизведения речи, как и ИКМ, однако для передачи информации при его использовании требуется полоса всего в 16 Кбит/с. Метод основан на кодировании не самой амплитуды сигнала, а ее изменения по сравнению с предыдущим значением; поэтому можно обойтись меньшим числом разрядов. В АДИКМ изменение уровня сигнала кодируется четырехразрядным числом, при этом частота измерения амплитуды сигнала сохраняется неизменной.

Все методы кодирования, основанные на определенных предположениях о форме сигнала, не подходят для передачи сигнала с резкими скачками амплитуды. Именно такой вид имеет сигнал, генерируемый модемами или факсимильными аппаратами, поэтому аппаратура, поддерживающая сжатие, должна автоматически распознавать сигналы факс-аппаратов и модемов и обрабатывать их иначе, чем голосовой трафик.

Многие методы кодирования берут свое начало от метода кодирования с линейным предсказанием (LPC, Linear Predictive Coding). В качестве входного сигнала в LPC используется последовательность цифровых значений амплитуды, но кодирование применяется не к отдельным цифровым значениям, а к определенным их блокам. Для каждого такого блока значений вычисляются его характерные параметры: частота, амплитуда и ряд других. Именно эти значения и передаются по сети. При таком подходе к кодированию речи, во-первых, возрастают требования к вычислительным мощностям специализированных процессоров, используемых для обработки сигнала, а во-вторых, увеличивается задержка при передаче, поскольку кодирование применяется не к отдельным значениям, а к некоторому их набору, который перед началом преобразования следует накопить в определенном буфере. Важно, что задержка в передаче речи не только связана с необходимостью обработки цифрового сигнала (эту задержку можно уменьшить, увеличив мощность процессора), но и определяется методом сжатия. Этот метод позволяет достигать очень больших степеней сжатия с полосой пропускания 2,4 или 4,8 Кбит/с, однако качество звука сильно страдает. Поэтому в коммерческих приложениях он не используется, а применяется в основном для ведения служебных переговоров.

Более сложные методы сжатия речи основаны на применении ЛКП в сочетании с элементами кодирования формы сигнала. В этих алгоритмах используется кодирование с обратной связью, когда при передаче сигнала осуществляется оптимизация кода. Закодировав сигнал, процессор пытается восстановить его форму и сравнивает результат с исходным сигналом, после чего начинает варьировать параметры кодировки, добиваясь наилучшего совпадения. Добившись совпадения, аппаратура передает полученный код по линиям связи; на противоположном конце происходит восстановление звукового сигнала. Ясно, что для использования такого метода требуются еще более серьезные вычислительные мощности.

Одной из наиболее распространенных разновидностей описанного метода кодирования является метод LD-CELP (Low-Delay Code-Excited Linear Prediction). Этот метод позволяет достичь удовлетворительного качества воспроизведения при пропускной способности 16 Кбит/с; он был стандартизован Международным союзом электросвязи (International Telecommunications Union - ITU) в 1992 году как алгоритм кодирования речи G.728. Алгоритм применяется к последовательности цифр, получаемых в результате аналого-цифрового преобразования голосового сигнала с 16-разрядным разрешением. Пять последовательных цифровых значений кодируются одним 10-битным блоком - это и дает 16 Кбит/с. Для применения этого метода требуются большие вычислительные мощности: в частности, для непосредственной реализации G.728 необходим процессор с быстродействием 44 MIPS.

В марте 1995 года ITU принял новый стандарт G.723, который предполагается использовать при сжатии речи для организации видеоконференций по телефонным сетям. Этот стандарт является частью более общего стандарта H.324, описывающего подход к организации таких видеоконференций. Целью его принятия является обеспечение видеоконференций с использованием обычных модемов. Основой G.723 является метод сжатия речи MP-MLQ (Multipulse Maximum Likelihood Quantization). Он позволяет добиться весьма существенного сжатия речи при сохранении достаточно высокого качества звучания. В основе метода лежит описанная выше процедура оптимизации; с помощью различных усовершенствований можно сжимать речь до уровня 4,8; 6,4; 7,2 и 8,0 Кбит/с. Структура алгоритма позволяет изменять степень сжатия голоса в ходе передачи. Вносимая кодированием задержка не превышает 20 мс.

Повышая эффективность использования полосы пропускания, механизмы сжатия речи в то же время могут привести к снижению качества речи и увеличению задержек. Некоторые основные алгоритмы сжатия речи и создаваемые при этом задержки приведены в табл. 1.

Количественными характеристиками ухудшения качества речи являются параметры ухудшения качества сигнала при квантовании (QDU, Quantization Distortion Units). Один QDU соответствует ухудшению качества при оцифровке с использованием стандартной процедуры ИКМ; значения QDU для основных методов компрессии приведены в табл. 2. Дополнительная обработка речи ведет к дальнейшей потере качества. Согласно рекомендациям МСЭ-Т, для международных вызовов величина QDU не должна превышать 14. Отметим, что передача разговора по международным магистральным каналам ухудшает качество речи, как правило, на 4 QDU.

Таблица 2. Ухудшение качества речи при использовании различных алгоритмов компрессии

Методы компрессии QDU
ADPCM 32 Кбит/с 3,5
ADPCM 24 Кбит/с 7
LD-CELP 16 Кбит/с 3,5
CS-CELP 8 Кбит/с 3,5

Следовательно, при передаче разговора по национальным сетям должно теряться не более 5 QDU. Поэтому для качественной передачи речи процедуру компрессии/декомпрессии желательно применять в сети только один раз. В некоторых странах это является обязательным требованием регулирующих органов, предъявляемым к сетям, подключенным к сетям общего пользования.

Подавление пауз - важная функция оборудования, обеспечивающего передачу голоса по IP-сетям. Суть технологии подавления пауз заключается в определении различия между моментами активной речи и молчания в период соединения. В результате применения этой технологии генерация пакетов происходит только в моменты активного разговора. Поскольку при типичном разговоре по телефону паузы составляют до 60% времени, возможна двукратная оптимизация количества передаваемых по линии данных. Объединение технологии сжатия речи и подавления пауз речи в коммутаторах приводит к уменьшению потока данных в канале в восемь раз.

Продолжение следует

КомпьютерПресс 5"1999

gastroguru © 2017